Search


Information
ICMST-Tohoku 2018
Oct. 23 - 26, 2018
Sendai, Japan
ICMST-Shenzhen 2016
Nov 1 - 4, 2016
Shenzhen, China
(EXIT THIS PAGE)
ICMST-Kobe 2014
Nov 2(Sun) - 5(Wed), 2014
Kobe, Japan
Nuclear Regulation Authority Outline of the New Safety Standards for Light Water Reactors for Electric Power Generation
For Public Comment
Outline of New Safety Standard (Design Basis)
For Public Comment
New Safety Standards (SA) Outline (Draft)
For Public Comment
Outline of New Safety Standard(Earthquake and Tsunami)(DRAFT)
Issues
 

Vol.10 No.2(Aug)
Vol.10 No.1(May)
Vol.9 No.4(Feb)
Vol.9 No.3(Nov)

< Other Issues

 

Occasional Topics
OTjapan Measures for Tsunami Striking Nuclear Power Station in Japan
Special Article: The Great Tohoku Earthquake (1)
OTjapan The Tragedy of “To Be” Principle in the Japanese Nuclear Industry
EJAMOT_CN3_Figure1_The_outside_view_of_CEFR OTChinaPlanning and Consideration on SFR R&D Activities in China
< All Occasional Topics

Featured Articles
EJAM7-3NT72 A New Mechanical Condition-based Maintenance Technology Using Instrumented Indentation Technique
EJAM7-3NT73 Survey robots for Fukushima Daiichi Nuclear Power Plant

JSM
Contacts
(EJAM): ejam@jsm.or.jp
(JSM): secretariat@jsm.or.jp
HP: http://www.jsm.or.jp
(in English)

 

Vol.6 No.3 previousSP12 (78-79-80-81)-NT 66

Academic Articles
Regular Paper Vol.6 No.3 (2014) p.57 - p.70
 

Plant Transients under Small Abnormalities of FBR “Monju” Calculated by a Plant System Code

 
Hiroyasu MOCHIZUKI1
 
1Research Institute of Nuclear Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055, JAPAN

 
Abstract
The objectives of the present study are to analyze plant transients caused by small abnormalities and to find plant parameters by which operators can recognize these small abnormalities. In order to evaluate the plant transient during an abnormal situation in the water system using the plant system code NETFLOW++, the turbine and feedwater (FW) systems should be analyzed with good precision. The code is validated using the measured data at “Monju”. Several abnormalities in the water system are candidates of the present study, e.g., FW control valve degradation, FW pump degradation, heat transfer degradation due to fouling on heat transfer tubes of the evaporator, loss-of-feedwater-heating, etc. All major components in the tertiary system are included in the calculation model such as the steam generators, the high-pressure turbine, the deaerator, the FW pump, the FW heaters, the FW control valves, the steam control valve, extraction lines and drainpipes. In case of a malfunction of a FW control valve resulting in low flow rate, a large temperature increase at the outlet of the evaporator is observed. On the other hand, a temperature decrease at the outlet of the evaporator occurs if heat transfer tubes in the evaporator have fouling. As a result of the calculations, it was determined that temperature at the outlet of the evaporator is a good indicator to detect abnormal situations.

 
Keywords
Monju, FBR, Plant system analysis, Water system, Slight abnormality, Abnormality indicators
 
Full Paper: PDF EJAM Vol.6No.3 pp.24-32 "Plant Transients under Small Abnormalities of FBR “Monju” Calculated by a Plant System Code"
Article Information
Article history:
Received 15 January 2014
Accepted 20 October 2014